A Capacitive Humidity Sensor Based on an Electrospun PVDF/Graphene Membrane
نویسندگان
چکیده
Humidity sensors have been widely used in areas such as agriculture, environmental conservation, medicine, instrumentation and climatology. Hydrophobicity is one of the important factors in capacitive humidity sensors: recent research has shown that the inclusion of graphene (G) in polyvinylidene fluoride (PVDF) improves its hydrophobicity. In this context, a methodology to fabricate electrospun membranes of PVDF blended with G was developed in order to improve the PVDF properties allowing the use of PVDF/G membrane as a capacitive humidity sensor. Micrographs of membranes were obtained by scanning electron microscopy to analyze the morphology of the fabricated samples. Subsequently, the capacitive response of the membrane, which showed an almost linear and directly proportional response to humidity, was tested. Results showed that the response time of PVDF/G membrane was faster than that of a commercial DHT11 sensor. In summary, PVDF/G membranes exhibit interesting properties as humidity sensors.
منابع مشابه
Fabrication and Evaluation of a Graphene Oxide-Based Capacitive Humidity Sensor
In this study, a CMOS compatible capacitive humidity sensor structure was designed and fabricated on a 200 mm CMOS BEOL Line. A top Al interconnect layer was used as an electrode with a comb/serpent structure, and graphene oxide (GO) was used as sensing material. XRD analysis was done which shows that GO sensing material has a strong and sharp (002) peak at about 10.278°, whereas graphite has (...
متن کاملUltrahigh humidity sensitivity of graphene oxide
Humidity sensors have been extensively used in various fields, and numerous problems are encountered when using humidity sensors, including low sensitivity, long response and recovery times, and narrow humidity detection ranges. Using graphene oxide (G-O) films as humidity sensing materials, we fabricate here a microscale capacitive humidity sensor. Compared with conventional capacitive humidit...
متن کاملCompliment Graphene Oxide Coating on Silk Fiber Surface via Electrostatic Force for Capacitive Humidity Sensor Applications
Cylindrical silk fiber (SF) was coated with Graphene oxide (GO) for capacitive humidity sensor applications. Negatively charged GO in the solution was attracted to the positively charged SF surface via electrostatic force without any help from adhesive intermediates. The magnitude of the positively charged SF surface was controlled through the static electricity charges created on the SF surfac...
متن کاملDesign of High Sensitivity and Linearity Microelectromechanical Systems Capacitive Tire Pressure Sensor using Stepped Membrane
This paper is focused on a novel design of stepped diaphragm for MEMS capacitive pressure sensor used in tire pressure monitoring system. The structure of sensor diaphragm plays a key role for determining the sensitivity of the sensor and the non-linearity of the output.First the structures of two capacitive pressure sensors with clamped square flatdiaphragms, with different thicknesses are inv...
متن کاملStable and Fast-Response Capacitive Humidity Sensors Based on a ZnO Nanopowder/PVP-RGO Multilayer
In this paper, capacitive-type humidity sensors were prepared by sequentially drop-coating the aqueous suspensions of zinc oxide (ZnO) nanopowders and polyvinyl pyrrolidone-reduced graphene oxide (PVP-RGO) nanocomposites onto interdigitated electrodes. Significant improvements in both sensitivity and linearity were achieved for the ZnO/PVP-RGO sensors compared with the PVP-RGO/ZnO, PVP-RGO, and...
متن کامل